ポスター3:11/26 PM2/PM3 (14:50-18:25)

ひさき衛星と Venus Express 同時観測の比較による金星外気圏水素の太陽風応答の 解析

#能勢 千鶴 $^{1)}$, 益永 圭 $^{2)}$, 土屋 史紀 $^{1)}$, 堺 正太朗 $^{3)}$, 笠羽 康正 $^{1)}$, Chaufray Jean-Yves $^{4)}$, Leblanc François $^{4,5)}$ $^{(1)}$ 東北大学, $^{(2)}$ 山形大学, $^{(3)}$ 慶應義塾大学, $^{(4)}$ 大気環境宇宙観測研究所, $^{(5)}$ ソルボンヌ大学

Response of the Venusian hydrogen exosphere to the solar wind coordinated observations by Hisaki and Venus Express

#Chizuru Nose¹⁾, Kei MASUNAGA²⁾, Fuminori TSUCHIYA¹⁾, Shotaro SAKAI³⁾, Yasumasa KASABA¹⁾, Jean-Yves Chaufray⁴⁾, François Leblanc^{4,5)}

(1Tohoku University, (2Yamagata University, (3Keio University, (4LATMOS, (5Sorbonne University

Observations of Ly- α emission from the hydrogen exosphere of Venus are crucial for understanding atmospheric escape mechanisms. Spacecraft observations have found that the hydrogen exosphere of Venus consists of thermal and non-thermal components. These components play an important role in thermal and non-thermal hydrogen escape, but their spatial and time variations remain unclear. Especially, response of the hot hydrogen distribution to the solar wind variations is poorly understood due to observational and analytical limitations, under which the exospheric physical quantities and their temporal variations have not been investigated separately for the thermal and non-thermal components. Disk-averaged Lyman- α observations made by Hisaki satellite in March – April 2014 revealed an ~18% increase in the hydrogen column density over 2 – 3 days following the arrival of high-speed solar wind streams. This increase has been interpreted as a possible enhancement of the non-thermal component caused by charge exchange reactions between ionospheric ions and thermal hydrogen in the exosphere. However, due to the low spatial resolution of Hisaki measurements, it was unclear how the spatial distribution of the atomic hydrogen density changed during this time period.

To investigate the altitude variations of hydrogen from the thermosphere to the exosphere in more detail, we analyzed limb observations obtained over ten years by the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus (SPICAV) ultraviolet spectrometer onboard Venus Express. In this presentation, we focus on SPICAV observations obtained simultaneously with the Hisaki measurements and examine how the global increase in hydrogen observed by Hisaki is manifested locally and how its vertical distribution varied. The observations were made on March 16 and March 26, 2014, and the tangent point local times were 19 and 20 hours, respectively. In order to derive temperature and density from these observations, we applied forward modeling using a three-dimensional exospheric hydrogen model (Chaufray et al., 2015) combined with Monte Carlo radiative transfer calculations to separate the contributions of thermal and non-thermal components.

A comparison of the common altitude range of 500 - 2000 km between the two days shows that the Ly- α brightness on March 16 was up to twice as high as that on March 26. This difference exceeded the expected variability due to local time and solar irradiance and exhibited an opposite trend to the Hisaki results, which indicated that the integrated brightness over the dayside was higher on March 26 than on March 16.

To further investigate the observed variability by separating the hot and cold components, we first fixed the exobase temperature and varied only the density distribution in the forward modeling. In this presentation, we discuss the observational results together with the forward-modeling analyses.

金星における水素原子 Ly- α 輝線の観測は、大気散逸メカニズムの解明において重要である。金星外気圏の水素は熱的成分と非熱的成分から構成され、両者が散逸過程に寄与していることが知られている。しかし、それぞれの時空間変動は十分には理解されておらず、特に太陽風到来時における高温成分の分布変化については知見が限られている。

ひさき衛星による 2014 年 3 月~4 月の全球平均観測では、高速太陽風到来後に $Ly-\alpha$ 大気光から導出した水素原子柱密度が 2 - 3 日かけて約 18 %増加する現象がみられた。この増加は、高速太陽風到来に伴い、電離圏イオンと外気圏熱的水素との電荷交換反応によって非熱的成分が増加した可能性が示唆される。しかしひさきは空間分解能が低く、この期間の水素原子の密度の空間分布の変化は明らかになっていない。

本研究では、熱圏から外気圏にかけての水素原子の高度分布変動を詳細に調査するため、10 年間に渡る Venus Express 搭載紫外線分光器 Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) のリム観測データを解析しようとしている。本発表では、ひさき衛星観測と同時期に取得された SPICAV 観測データを解析し、ひさきがとらえた全球平均の水素原子の増加が局所的にはどのように変化したか、高度分布がどのように変化したかを検証した。

解析対象は 2014 年 3 月 16 日および 26 日の観測で、視線上のタンジェントポイントの地方時は 19 時、20 時であった。Ly- α 波長の光は光学的に厚いため、観測値から直接的に温度や密度を導出することは困難である。そこで得られた Ly- α 光の高度プロファイルに対し、Chaufray et al. (2015) に基づく三次元外気圏水素モデルとモンテカルロ放射輸送計算を用いたフォワードモデル解析を行い、熱的成分と非熱的成分の寄与を分離した。

両日の観測高度が共通する $500\sim2000~km$ の範囲で比較した結果、3 月 16 日の Ly- α 光強度は 3 月 26 日よりも最大

で約 2 倍高いことが明らかとなった。この差は、観測地方時や太陽放射照度の違いから予測される変動を上回るものであった。この傾向は、主に昼側全体の積分強度が、3 月 26 日の方が 3 月 16 日より明るいと示したひさき観測結果とは逆の傾向を示した。

さらに観測された大気光の変動を高温成分と低温成分に分離して調べるため、まず外気圏底の温度を固定し、密度分布のみを変化させてフォワードモデル計算を行った。本発表では観測及びフォワードモデル計算結果について議論する。