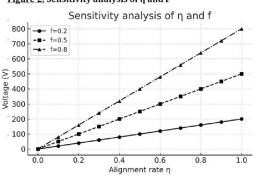
惑星雷の発生機構に関する一考察 — 起き上がりこぼし理論・近接双極子電子リレー理論・双極子直列電池理論・結合静電容量減少理論に基づく比較 —

#佐藤 元信 ¹⁾ ⁽¹ 志段味中

Planetary Lightning -Based on the Roly-Poly, the Dipole Proximity Electron Relay, the Dipole Series Battery, Capacitance-Decrease-

#Motonobu Sato1)

(1 Shidami Junior High School, Nagoya City


Lightning has been observed not only on Earth but also on Jupiter, Saturn, Uranus, Neptune, and possibly Venus. The conventional collisional charging theory, which assumes charge separation through collisions of ice particles or droplets, cannot fully explain volcanic lightning, planetary lightning, or blue-sky discharges. This study integrates four mechanisms: (1) the Acceleration-Rectified Dipole Alignment (ARDA), (2) the Dipole Proximity Electron Relay theory, (3) the Dipole Series Battery theory, and (4) the Capacitance-Decrease Mechanism. The ARDA explains how molecular alignment is rectified by asymmetry between mass and charge centers under external acceleration, the Dipole Proximity Electron Relay theory explains how electrons propagate domino-like between adjacent dipoles, forming discharge pathways. The Dipole Series Battery describes how aligned dipoles add their moments to form a potential difference ($\Delta V = \alpha \times E \times d$). Additionally, The Capacitance-Decrease Mechanism shows how growth of ice particles reduces capacitance, leading to voltage amplification. Comparative analysis indicates that on Earth, aligned water vapor initiates charge layers in thunderclouds, while ice growth and capacitance decrease trigger discharges. On Jupiter and Saturn, extensive alignment occurs within deep water - ammonia clouds, where alignment distances of tens to hundreds of kilometers allow much stronger potential differences than terrestrial lightning. On Venus, however, the CO₂-rich atmosphere and sulfuric acid clouds provide few dipolar molecules or ice particles, so lightning is limited to localized regions. Sensitivity analysis with alignment rate η and dipole fraction f shows that higher values sharply increase V - I characteristics and reduce the required number of ice particles N. Thus, in ice-rich environments such as Jupiter, capacitance decrease strongly accelerates reaching the discharge threshold, whereas in ice-poor Venus, this trigger is absent. The integrated model is consistent with observations from the Juno and Cassini missions and offers a unified framework for planetary lightning. Future work will involve parameter identification from spacecraft data and simultaneous measurement of alignment, dipole fraction, and particle number.

雷は地球のみならず、木星・土星・天王星・海王星などのガス惑星や金星の大気中でも観測されている。従来の衝突帯電説は氷粒や水滴の衝突を前提とするが、火山雷や惑星雷、青天の霹靂などを十分に説明できない。本研究では、①起き上がりこぼし理論(ARDA)、②近接双極子電子リレー理論、③双極子直列電池理論、④結合静電容量減少理論の四理論を統合し、惑星大気における雷発生モデルを検討する。起き上がりこぼし理論は分子の重心と電荷中心の非対称性により、外力下で整列が整流される機構を示す。近接双極子電子リレー理論は、隣接分子間で電子がドミノ的に伝搬し、放電経路を形成する機構を説明する。双極子直列電池理論は整列分子のモーメント加算により空間電位差 Δ V= α × E × d を生じ、結合静電容量減少理論は氷粒や液滴の成長で容量が低下し電位差が増幅される。比較の結果、地球では積乱雲下層で水蒸気整列が起点となり、氷粒帯電と容量減少が加わって放電に至る。木星や土星では深い水雲やアンモニア雲で広範な整列が生じ、整列距離が数十~百 km に達し、地球雷を超える電位差形成が可能となる。一方、金星は二酸化炭素主体で雲頂は硫酸液滴に覆われ、水分子や氷粒が乏しく、雷は局所的に限定される。また、整列率 η と双極子成分比 f を変化させた感度分析により、 η や f が高いほど V - I 特性が急増し、必要氷粒数 N は減少することが示された。木星のように氷粒供給が豊富な環境では容量減少効果が強く作用し、短時間で放電閾値に達する。金星のように氷粒形成が困難な場合、このトリガーが働かず雷活動は限定的である。本モデルは I Juno 探査機やカッシーニ探査機の観測結果と整合し、従来説では説明困難な惑星雷の統一的理解を可能にする。今後は探査機データに基づくパラメータ同定と、整列率・双極子比・氷粒数の同時計測が重要である。

Figure 1. Planetary atmospheric comparison

Planet	Main compo- nents	Pressure (bar)	Temperature (K)	Main dipole molecules	Acceleration sources
Earth.	N ₂ , O ₂ , H ₂ O.	1	288.	H ₂ O.	Convection, storms
Venus-	CO ₂ , H ₂ SO ₄ .	90.	730.	H ₂ SO ₄ (weak)	Thermal convection
Jupiter,	H ₂ , He, H ₂ O, NH ₃ .	1-10.	110-160.	H ₂ O, NH ₃ .	Strong convection, planetary waves
Saturn.	H ₂ , He, NH ₃ , H ₂ O.	1-10.	90-140	H ₂ O, NH ₃ .	Strong convection
Uranus.	H ₂ , He, CH ₄ , NH ₃ .	1-10.	60-80.	NH ₃ , CH ₄ .	Convection, rotation
Neptune.	H ₂ , He, CH ₄ ,	1-10.	60-80.	CH4 (weak).	Convection, rotation.

Figure 2. Sensitivity analysis of η and f

