R010-16

B 会場 : 11/25 AM2(11:05-12:35)

11:35~11:50:00

X線観測で明らかにした 2024 年 10 月 10—13 日の大規模磁気嵐に対する下部熱圏 の応答

#勝田 哲 $^{1)}$, 峠 千尋 $^{2)}$, 森 浩二 $^{3)}$, 三好 由純 $^{4)}$, 品川 裕之 $^{2,5)}$, 金丸 善朗 $^{6)}$, Behar Ehud $^{12)}$, 藤原 均 $^{10)}$, 陣 英克 $^{2)}$, Miller Eric $^{9)}$, 三好 泰信 $^{5)}$, 望月 優子 $^{1,7)}$, 中澤 知洋 $^{4)}$, 信川 久実子 $^{8)}$, 大城 勇憲 $^{7)}$, Petre Robert $^{11)}$, 鈴木 寛大 $^{3)}$, 玉川 徹 $^{7)}$, 田代 信 $^{1)}$, 土屋 草馬 $^{7,13)}$

 $^{(1)}$ 埼玉大学, $^{(2)}$ 国立研究開発法人情報通信研究機構, $^{(3)}$ 宮崎大学, $^{(4)}$ 名古屋大学, $^{(5)}$ 九州大学, $^{(6)}$ JAXA 宇宙科学研究所, $^{(7)}$ 理化学研究所, $^{(8)}$ 近畿大学, $^{(9)}$ マサチーセッツ工科大学, $^{(10)}$ 成蹊大学, $^{(11)}$ NASA/GSFC, $^{(12)}$ Techinion, $^{(13)}$ 東京理科大学

Lower Thermospheric Response to the Severe Geomagnetic Storm during October 2024 Revealed by X-ray Observations

#Satoru Katsuda¹⁾, Chihiro Tao²⁾, Koji Mori³⁾, Yoshizumi Miyoshi⁴⁾, Hiroyuki Shinagawa^{2,5)}, Yoshiaki Kanemaru⁶⁾, Ehud Behar¹²⁾, Hitoshi Fujiwara¹⁰⁾, Hidekatsu Jin²⁾, Eric Miller⁹⁾, Yasunobu Miyoshi⁵⁾, Yuko Mochizuki^{1,7)}, Kazuhiro Nakazawa⁴⁾, Kumiko Nobukawa⁸⁾, Yuken Ohshiro⁷⁾, Robert Petre¹¹⁾, Hiromasa Suzuki³⁾, Toru Tamagawa⁷⁾, Makoto Tashiro¹⁾, Soma Tsuchiya^{7,13)}

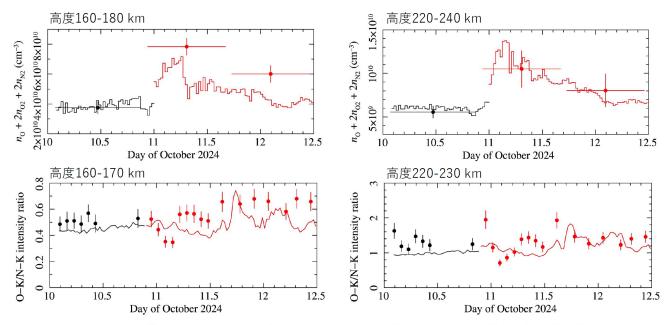
⁽¹Saitama University, ⁽²NICT, ⁽³University of Miyazaki, ⁽⁴Nagoya University, ⁽⁵Kyushu University, ⁽⁶JAXA/ISAS, ⁽⁷RIKEN, ⁽⁸Kindai University, ⁽⁹MIT, ⁽¹⁰Seikei University, ⁽¹¹NASA/GSFC, ⁽¹²Technion, ⁽¹³Tokyo University of Science</sup>

The recent surge in the number of artificial satellites in low Earth orbit has heightened the importance of precise space weather characterization for ensuring safe satellite launch and operation. Among space weather phenomena, extreme geomagnetic storms can induce significant thermospheric density perturbations, leading to substantial orbital deviations. Accurate quantification of atmospheric density variations during such events is therefore critical for reliable orbit prediction and satellite safety. However, due to the rarity of intense geomagnetic storms, observational data capturing atmospheric responses remain limited. We have recently pioneered a novel observational technique utilizing X-ray astronomy satellites to probe the upper atmosphere. Since cosmic X-rays are predominantly absorbed in the lower thermosphere (100 – 200 km altitude), this method offers a unique opportunity to investigate this otherwise elusive region.

The geomagnetic storm that occurred between October 10 and 13, 2024 (minimum Dst index: - 335 nT), ranked as the second most intense event of Solar Cycle 25, provided a rare opportunity to examine the thermospheric response to a large-scale storm. During this period, the X-ray astronomy satellite XRISM conducted calibration observations of the Cygnus Loop (October 10) and E0102 (October 10 – 12). By analyzing atmospheric occultation data obtained immediately after these sources rose from the Earth's nightside, and X-ray emissions from the sunlit Earth limb just prior to setting, we successfully derived vertical profiles of atmospheric density and the O/N composition ratio. The occultation data yielded density profiles from 120 to 250 km in 20 km intervals, while the limb observations provided composition profiles from 100 to 300 km in 10 km intervals.

Our analysis revealed that total atmospheric density remained nominal prior to the storm, increased by approximately a factor of two during the main phase, and decreased by several tens of percent during the early recovery phase. Furthermore, the ratio of fluorescent O-K to N-K emission line intensities (O/N) decreased by 50 – 60% during the three-hour peak of storm activity. Considering the occultation-derived total densities of oxygen and nitrogen, and the associated changes in photoelectric absorption, the observed O/N reduction is consistent with nitrogen and oxygen densities increasing to 2.2 and 1.5 times their quiet-time values, respectively, during the storm's main phase.

Based on these findings, we infer the following sequence of thermospheric response: The geomagnetic storm, triggered by a coronal mass ejection arriving between 16:00 and 23:00 UT on October 10, induced strong Joule heating in the polar regions during the main and early recovery phases. This heating caused polar atmospheric expansion and uplift of nitrogen-rich neutral air from the lower thermosphere to higher altitudes, followed by equatorward transport. Consequently, by early October 11 (around 03:30 local time, 01:00 UT), the equatorial thermosphere exhibited expansion and a marked decrease in the O/N ratio.


Simulations using the GAIA model, incorporating geomagnetic storm effects, successfully reproduced the observed density enhancement during the main phase. However, the model failed to replicate the pronounced decrease in the O/N composition ratio, indicating the need for further refinement of atmospheric models to fully capture the complex dynamics of storm-time thermospheric responses.

地球低軌道を周回する人工衛星の数が爆発的に増加する近年、その安全な打ち上げと飛行には、宇宙天気の詳細な理解がますます重要になってきている。特に、極端な磁気嵐は熱圏の密度擾乱を引き起こし、衛星軌道を大きく変化させる。このため、磁気嵐に伴う大気密度の変動を正確に把握することは人工衛星の軌道予測、ひいては安全な飛行に不可欠であ

る。しかし、大規模な磁気嵐は稀であるため、大気密度の応答が測定された例は少ない。我々は近年、X線天文衛星による超高層大気の観測というユニークな手法を開拓してきた。宇宙X線は主に下部熱圏 (高度 100-200 km の大気層) で吸収されることから、これまで観測が難しかった下部熱圏を調査する新しい手段になる。

2024 年 10 月 10—13 日に発生した磁気嵐 (最小 Dst 指数 -335 nT) は、第 25 太陽周期中に発生した磁気嵐の中で 2 番目に強いもので、大規模磁気嵐に対する大気応答を調べる貴重な機会を提供した。X 線天文衛星 XRISM は、この磁気嵐が発生した際、観測機器の較正目的で Cygnus Loop(観測日: 2024 年 10 月 10 日) と E0102(観測日: 2024 年 10 月 10—12 日) を観測していた。これらの天体が夜側の地球から昇った直後の大気掩蔽データ、および昼側の地球に没っした直前の昼地球リム大気 X 線を解析することで、それぞれ大気の密度と X の密度と X を X を X を X の計測に成功した。前者は高度 X 120—250 km の範囲を高度層 X 20 km 間隔で、後者は X 100—300 km を X 10 km 間隔で高度分布を得た。

その結果、大気のトータル密度は、磁気嵐前には平常通りの密度であったが、磁気嵐主相で嵐前に比べ2倍程度増加し、回復相初期にはピークから数割低下したことが判明した。また、蛍光輝線強度比 O-K/N-K は、嵐が最も強い3時間、前後の50-60%に低下していた。この低下は、掩蔽解析の結果(酸素・窒素トータル密度が2倍程度)とそれに伴う光電吸収の変化を考慮すると、磁気嵐主相にて大気の窒素密度([N]+2*[N2])、酸素密度([O]+2*[O2])がそれぞれ平常時の2.2倍、1.5倍になったと考えると辻褄が合う。以上の結果から磁気嵐に伴う下部熱圏の応答を次のように推察した。2025年10月10日16:00~23:00に地球に到達したコロナ質量放出によって磁気嵐が発生し、磁気嵐主相から回復相にかけて極域に強いジュール加熱が発生した。ジュール加熱で極域の大気が膨張し、下部熱圏の大きな[N2]/[O]の比を持つ中性大気が高高度に上昇、極域から赤道に輸送された。その結果、10月11日未明(地方時3:30頃、UT1:00頃)には、赤道付近の大気が膨張し、O/N 比の低下が生じたと考えられる。磁気嵐の影響を加味したGAIAシミュレーションは、主相での密度増加を定量的に再現したが、O/N 組成比の顕著な低下は再現しなかった。磁気嵐に対する大気応答の完全解明にはさらなるモデルの精緻化が必要である。

上の2パネルは天体の掩蔽から得た大気密度。下の2パネルは昼地球のO-K, N-K蛍光 X 線の強度比。GAIA シミュレーション結果を実線で示す。GAIAの([O]+[O2])/[N2]に、光電離、蛍光収率、光学的厚みの影響を取り込んでO-K/N-Kフラックス比に変換した。