ポスター3:11/26 PM2/PM3 (14:50-18:25)

複数探査機による多点その場観測から迫る、太陽高エネルギー粒子の太陽系動径一 方位角方向の強度変化に関する研究

#木下 岳 ¹⁾ ⁽¹ 東大理

Variations of intensity profiles of SEP in the inner heliosphere using multi-point in-situ observations

#Gaku Kinoshita¹⁾

(1Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo

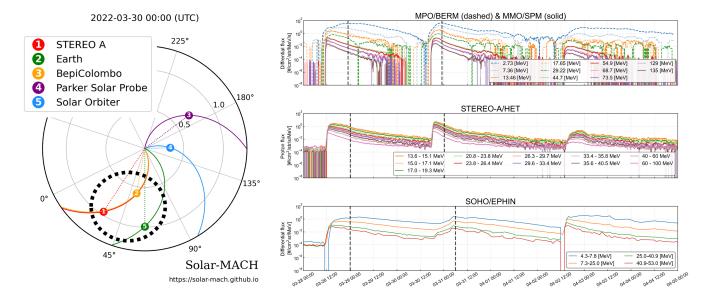
Solar Energetic Particles (SEPs) are high-energy charged particles in the keV – MeV range accelerated in association with solar flares and coronal mass ejections. When SEPs reach near-Earth space, they can cause severe disturbances to satellites and ground-based infrastructure, making their physical processes an important subject in space weather research.

To estimate the impact of SEPs, it is essential to evaluate the radial and longitudinal attenuation of their intensities during propagation in the heliosphere. Previous studies (e.g., McKibben et al. 2003; Roelof et al. 1992) reported that SEP intensities measured at widely separated spacecraft can differ significantly during the rising phase of an event, whereas the spatial gradients diminish substantially during the decay phase, with intensities often converging within a factor of 2 – 3. Interestingly, the temporal evolution of the intensities has been found to be similar across observation points separated radially, longitudinally, or latitudinally. This phenomenon is known as the reservoir effect (Roelof et al. 1992). Based on multi-spacecraft peak intensity measurements, Lario et al. (2006) proposed an empirical expression for this effect. However, their study used different SEP events to examine radial and longitudinal dependences separately, and thus could not fully eliminate event-to-event variability.

In this study, we quantitatively evaluate the reservoir effect using multi-point observations of the late March 2022 SEP event obtained by BepiColombo/SPM-BERM (Kinoshita et al. 2025; Pinto et al. 2022), STEREO-A/HET (Von Rosenvinge et al. 2008), and near-Earth instruments. During this event, BepiColombo and STEREO-A were magnetically well connected and separated radially by 0.4 au, while STEREO-A and Earth were located at nearly the same heliocentric distance but separated by 21.4° in longitude (see attached figure). Since the same SEP event was observed simultaneously at these distinct locations, direct comparisons enable a more accurate assessment of the reservoir effect. An initial analysis of this event has already been presented in Section 5.4 of Sánchez-Cano et al. (2025), which summarizes BepiColombo's exploration of the inner heliosphere. In this presentation, we report follow-up results focusing specifically on the reservoir effect.

太陽高エネルギー粒子(Solar Energetic Particle: SEP)とは、太陽フレアやコロナ質量放出などに伴って加速される keV-MeV 帯の高エネルギーの荷電粒子である。特に地球近傍に到達した際には人工衛星や地上インフラに深刻な障害をもたらす場合もあり、その物理過程の理解は、宇宙天気の観点から重要である。

SEP の影響の見積もりに当たっては、太陽系を伝搬中する際の、動径・方位角方向の減衰度を評価する必要がある。先行研究(e.g. McKibben et al. 2003;Roelof et al. 1992)においては、遠く離れた探査機によって測定された強度は、SEP 強度の上昇期には大きく異なる可能性があるが、強度の空間勾配は減衰期には大きく減少し、しばしば同等の強度に近づくとされ、また興味深いことにすべての経度・緯度方向・動径方向の観測点おいて時間的に同様に進化するとされ、これらはリザーバー現象(Reservoir Effect: Roelof et al. 1992)と呼ばれている。関連文献 1: Lario et al. (2006) は複数探査機の SEP ピーク強度のその場観測に基づき、この現象を説明する経験式を提案している。しかし、この研究では動径・方位角方向の検証にそれぞれ別 SEP イベントを用いており、イベントごとの特性の違いを排除した検証ができていないと考えられる。


本研究では 2022 年 3 月末に発生した SEP イベントの BepiColombo/SPM-BERM(Kinoshita et al. 2025; Pinto et al. 2022)、STEREO-A/HET (Von Rosenvinge et al. 2008)、地球における多点観測データを用いて、リザーバー現象を定量的に評価する。BepiColombo、STEREO-A は磁気的接続がよい状態で動径方向に 0.4 au 離れており、STEREO-A と地球は日心距離はほぼ同じで、方位角方向に 21.4 度離れて SEP を観測していた(添付図)。よって同じ SEP を異なる位置で観測しているため、それぞれを比較すればリザーバー現象の影響をより正確に検証できる。著者が取り組んだ本イベントの初期解析結果は、BepiColombo の内部太陽圏探査をまとめた関連文献 2:Sanchez-Cano et al. (2025) の 5.4 章、および BepiColombo の観測機器を扱った関連文献 3:Kinoshita et al. (2025) の 4 章にて既に発表しているが、本発表ではリザーバー現象に焦点を当てた続報を紹介する。

【関連文献】

1. D. Lario, M.-B. Kallenrode, R. B. Decker et al. Radial and Longitudinal Dependence of Solar 4-13 MeV and 27-37 MeV

Proton Peak Intensities and Fluences: Helios and IMP 8 Observations (2006) ApJ 653 1531, https://doi.org/10.1086/508982

- 2. Sánchez-Cano, B., Hadid, L.Z., Aizawa, S. et al. BepiColombo cruise science: overview of the mission contribution to heliophysics. Earth Planets Space 77, 114 (2025). https://doi.org/10.1186/s40623-025-02256-z
- 3. Kinoshita, G., Ueno, H., Murakami, G., Simulation for the Calibration of Radiation Housekeeping Monitor Onboard BepiColombo/MMO and Application to the Inner Heliosphere Exploration (2025) JGR, 130, 10, https://doi.org/10.1029/2024JA033147

