ポスター3:11/26 PM2/PM3 (14:50-18:25)

月面利用拡大に向けた超小型・省電力宇宙放射線環境計測技術開発

#三好 由純 $^{1)}$, 永松 愛子 $^{2)}$, 笠原 慧 $^{3)}$, 岸本 裕二 $^{4)}$, 寺沢 和洋 $^{2,5)}$, 佐藤 達彦 $^{6)}$, 玉川 徹 $^{7)}$, 中村 吏一郎 $^{7)}$, 幸村 考由 $^{8)}$, 三谷 烈史 $^{2)}$, 原田 裕己 $^{1)}$, 臼井 英之 $^{10)}$, 三宅 洋平 $^{10)}$, 栗田 怜 $^{9)}$, 西野 真木 $^{2)}$

 $^{(1)}$ 名大 ISEE, $^{(2)}$ 宇宙航空研究開発機構, $^{(3)}$ 東京大学, $^{(4)}$ 高エネルギー加速器研究機構, $^{(5)}$ 慶応義塾大学, $^{(6)}$ 日本原子力研究開発機構, $^{(7)}$ 理化学研究所, $^{(8)}$ 東京理科大学, $^{(9)}$ 京都大学, $^{(10)}$ 神戸大学

Development of Ultra-Compact and Low-Power Space Radiation Environment Measurement Technologies for Lunar Environment

#Yoshizumi Miyoshi¹⁾, Aiko Nagamatsu²⁾, Satoshi KASAHARA³⁾, Yuji Kishimoto⁴⁾, Kazuhiro Terasawa^{2,5)}, Tatsuhiko Sato⁶⁾, Toru Tamagawa⁷⁾, Riichiro Nakamura⁷⁾, Takayoshi Kohmura⁸⁾, Takefumi MITANI²⁾, Yuki HARADA¹⁾, Hideyuki USUI¹⁰⁾, Yohei MIYAKE¹⁰⁾, Satoshi KURITA⁹⁾, Masaki NISHINO²⁾

(1 Institute for Space-Earth Environemental Research, Nagoya University, (2 JAXA, (3 The University of Tokyo, (4 KEK, (5 Keio University, (6 JAERI, (7 RIKEN, (8 Tokyo University of Science, (9 Kyoto University, (10 Kobe University

In future human exploration of the lunar environment, measurements of the space radiation environment in lunar orbit and on the lunar surface will be a key technology directly linked to radiation exposure assessment, radiation shielding, and the design of structures. In particular, establishing reliable systems for radiation measurement, evaluation, and prediction is essential for sustainable human activities on the Moon. Furthermore, to realize multi-point observations on the lunar surface, such as by installing instruments on rovers or lunar environmental platforms ("lunar weather stations"), it is crucial to develop compact and low-power measurement instruments.

To address these needs, our research group is developing radiation detectors with the characteristics of low power consumption and compact size: the PS-TEPC (Position-Sensitive Tissue Equivalent Proportional Chamber), Lunar-RICheS (Ring Imaging Cherenkov Spectrometer), and LEON (Lunar Environment ElectON sensor). Among them, PS-TEPC and Lunar-RICheS are designed to measure SEP and GCR contributions to radiation exposure, while LEON focuses on measuring electrons related to charging phenomena. In this presentation, we will report on our progress to date as well as future development plans and the roadmap of these lunar radiation environment measurement technologies.

今後の人類の月圏での探査において、月周回・月面での宇宙放射線環境計測は、被ばくや放射線環境の低減、構造物などの放射線防護技術・遮蔽設計にも直結する重要なキー技術である。特に、月面での有人活動における宇宙放射線計測・評価・予測の確立は、今後の持続的な月圏での活動にとって必須となる。また、将来のローバーへの搭載や、月面環境プラットフォーム(月百葉箱)などによる月面多点での観測を実現するために、省電力かつ小型の計測装置開発を進める必要となる。これらの点をふまえて、本研究グループは、省電力・小型という特徴を生かした月放射線計測装置として、PS-TEPC(位置有感生体等価比例係数箱)、Lunar-RICheS(月探査搭載用チェレンコフ検出器)、LEON(月環境用電子計測器)の開発を進めている。このうち、PS-TEPCと Lunar-RICheS は被ばくに関する SEP や GCR の計測を行い、LEONは帯電に関する電子の計測を行うものである。本講演では、これまでの進捗と、今後の開発計画、ロードマップについて報告する。

参考文献

三好 由純,三宅 洋平,原田 裕己,西野 真木,栗田 怜,笠原 慧,臼井 英之,永松 愛子,奥村 哲平,豊田 和弘,中村 紗都子 将来の月周回・月面観測および開発における帯電環境計測と評価に向けて、遊星人、34,2025 (ISSN: 0918-273X)