ポスター3:11/26 PM2/PM3 (14:50-18:25)

## 宇宙天気現象の指標・閾値の検討(通信・放送分野)

#陣 英克  $^{1)}$ , 津川 卓也  $^{1)}$ , 垰 千尋  $^{1)}$ , 安藤 慧  $^{1)}$ , 西岡 未知  $^{1)}$ , PERWITASARI Septi  $^{1)}$  情報通信研究機構

## Study on Indicators and Thresholds for Space Weather Phenomena (Telecommunications and Broadcasting Sector)

#Hidekatsu Jin<sup>1)</sup>, Takuya TSUGAWA<sup>1)</sup>, Chihiro TAO<sup>1)</sup>, Satoshi ANDOH<sup>1)</sup>, Michi NISHIOKA<sup>1)</sup>, Septi PERWITASARI<sup>1)</sup>
(1) National Institute of Information and Communications Technology

Awareness of the risks that space weather poses to society is gradually spreading. There have already been cases where space weather has impacted social infrastructure. In 2022, the Ministry of Internal Affairs and Communications held a study group on advancing space weather forecasting, where several socio-economic sectors were identified as being at risk: telecommunications and broadcasting, satellite positioning, satellite operations, aviation operations, and the power sector. Discussions were held on standards for forecasts and warnings. For phenomena where indicators and warning thresholds have been established, information provision began in June 2025 under the name "Space weather Alert For social Impacts and Risks (SAFIR)."

In the telecommunications and broadcasting sector, discussions focused on space weather phenomena that affect radio communications. These phenomena primarily impact radio waves in the HF to UHF bands through disturbances in the Earth's ionosphere. Specifically, the study addressed the Dellinger phenomenon, polar cap absorption, ionospheric storms, sporadic E layers, and plasma bubbles. Among these, SAFIR has already defined indicators and thresholds for the Dellinger phenomenon, polar cap absorption, and ionospheric storms, and has begun providing related information.

This presentation will review how the indicators and thresholds for the Dellinger phenomenon, polar cap absorption, and ionospheric storms were established, and will propose and discuss approaches for defining indicators and thresholds for the remaining phenomena: sporadic E layers and plasma bubbles.

宇宙天気が社会にもたらすリスクへの認識が国内外で広まりつつある。宇宙天気が社会インフラに影響する事例も起きている。2022年に開催された総務省の「宇宙天気予報の高度化の在り方に関する検討会」では、リスクのある社会経済分野として、通信・放送、衛星測位、衛星運用、航空運用、電力分野が特定され、予報・警報の基準などが議論された。そのうち、指標や警報の閾値が確定したものについては、2025年6月から「宇宙天気イベント通報(SAFIR)」として提供が開始された。通信・放送分野に関しては、無線通信に影響する宇宙天気現象について議論された。それらの現象は主に地球電離圏のじょう乱を通じてHF帯からUHF帯の通信電波に影響を与えるものであり、具体的にはデリンジャー現象、極冠吸収、電離圏嵐、スポラディックE層、プラズマバブルが扱われた。SAFIRでは、そのうちデリンジャー現象、極冠吸収、電離圏嵐について既に指標と閾値を定めて情報提供を開始している。本発表では、デリンジャー現象、極冠吸収、電離圏嵐についてどのように指標と閾値を定めたかを確認するとともに、残りのスポラディックE層とプラズマバブルに対して指標と閾値の考え方を提案し、議論を行いたい。