R011-24

C会場: 11/25 AM2 (11:05-12:35)

12:20~12:35:00

グレンジャー因果に基づく多変量時系列データの根本原因分析手法の開発

#大森 敬太 $^{1)}$, 藤本 晶子 $^{1)}$, 斎藤 寿樹 $^{1)}$, 宮野 英次 $^{1)}$ $^{(1)}$ 九州工業大学

Root Cause Analysis in Multivariate Time-Series Data Using Granger Causality

#Keita OHMORI¹⁾, Akiko FUJIMOTO¹⁾, Toshiki SAITOH¹⁾, Eiji MIYANO¹⁾
⁽¹Kyushu Institute of Technology

In recent years, the advancement of IoT and observational technologies has led to the accumulation of multivariate time series data across a wide range of fields, from natural sciences to industry. Estimating causal relationships among variables from these data and identifying the fundamental factors that drive fluctuations in the target variable are essential for understanding phenomena and making informed decisions. In this study, we propose a root cause analysis method based on the Granger causality test. The Granger causality test is a statistical method that evaluates whether the past values of one time series can statistically improve the prediction of another time series, thereby determining the presence of a pseudo-causal relationship between two variables. Our method sequentially searches for variables with significant Granger causality by tracing backward from the target variable, performs only the necessary tests to construct a Granger causality graph, and extracts the starting nodes on the causal paths as the root causes. The advantage of this method is that it reduces computational cost by conducting only the necessary tests sequentially, compared to conventional methods that test causal relationships for all variable pairs, while still identifying both direct and indirect sources of influence on the target variable. For root cause analysis, we apply the proposed method to observational data, including solar activity, solar wind parameters, and geomagnetic variations and evaluate the results in comparison with the existing time-series causal discovery method, PCMCI (Peter and Clark Momentary Conditional Independence). Using the Dst index, representing geomagnetic storm activity, as the target variable, and solar activity indicators such as sunspot numbers as explanatory variables, we conduct a root cause analysis. The results show that the selected parameters and causal structure are consistent with established scientific knowledge, and that our approach yields a structure more consistent with domain expertise and easier to interpret.

近年、IoT や観測技術の発展により、自然科学から産業分野まで、多様な領域で多変量時系列データが蓄積されている。これらのデータから変数間の因果関係を推定し、目的変数の変動を引き起こす根本の要因を特定することは、現象理解や意思決定に不可欠である。本研究では、グレンジャー因果検定に基づく根本原因分析手法を提案する。グレンジャー因果検定は、ある時系列の過去値が別の時系列の将来予測を統計的に改善するかを評価し、2 変数間の擬似的な因果関係の有無を判定する統計手法である。提案手法は、目的変数から遡って有意なグレンジャー因果を持つ変数を順次探索し、必要な検定のみを実施してグレンジャー因果グラフを構築し、その経路上の起点ノードを根本原因として抽出する。本手法の特長は、全ての変数ペアに対して因果関係を検定する従来の手法に比べて、必要な検定のみを順次実施することで計算コストを削減でき、その上で目的変数に対する直接・間接の影響源を特定できる点にある。提案手法を太陽活動と地磁気変化の観測データに適用し、既存の時系列因果探索手法である PCMCI (Peter and Clark Momentary Conditional Independence)と結果を比較する。地磁気の変動(Dst 指数)を目的変数、太陽黒点数などの太陽活動パラメータを説明変数として根本原因分析を行った結果、選択されるパラメータおよび因果構造は既知の専門的知見と整合しており、より解釈しやすい構造が得られることを示す。