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Field line resonance (FLR) provides key diagnostics of plasmaspheric density but remains difficult to identify reliably in
noisy spectrograms. We propose a novel framework that applies deep learning and morphological image processing to auto-
mate FLR detection and frequency extraction, highlighting the value of data-driven approaches in geospace science.

Our method uses paired spectrograms from amplitude-ratio and phase-difference analyses. An FLR discrimination
model, based on ResNet18 transfer learning, classifies FLR presence in phase-difference spectrograms. Noise is suppressed
with a variance-based filter that retains only low-variance regions, improving resonance visibility. For frequency estimation,
Grad-CAM visualizations of the trained model highlight FLR regions, which are intersected with amplitude-ratio spectro-
grams. Morphological dilation/erosion and differencing along the frequency axis then yield FLR frequencies.

Using 4,987 paired images (80/20 split), the model achieved 0.839 accuracy, 0.875 precision, 0.890 recall, and 0.882
Fl-score. False negatives were minimized, and errors mainly arose from visually ambiguous cases. Frequency detection
showed successful cases, but overall stability remains limited and further refinement is required.

This work introduces an image-based paradigm for FLR analysis, combining computer vision techniques with geophysi-
cal diagnostics. The proposed approach not only supports automated plasmaspheric density estimation but also offers broader
applicability to ionospheric and magnetospheric data, contributing to space environment modeling and forecasting.
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