ポスター3:11/26 PM2/PM3 (14:50-18:25)

## 深層学習とモルフォロジー処理による地磁気スペクトログラムからの磁力線共鳴 FLRの自動検出と周波数抽出

#野口 怜莉  $^{1)}$ , 尾花 由紀  $^{2)}$ , 田村 伊織  $^{1)}$ , 近藤 蒼一郎  $^{1)}$ , 藤本 晶子  $^{1)}$   $^{(1)}$  九州工業大学,  $^{(2)}$  九州大学

## Automated FLR Detection and Frequency Extraction from Geomagnetic Spectrograms Using Deep Learning and Morphological Processing

#Reiri NOGUCHI $^{1}$ ), Yuki OBANA $^{2}$ ), Iori TAMURA $^{1}$ ), Soichiro KONDOU $^{1}$ ), Akiko FUJIMOTO $^{1}$ ) ( $^{1}$ Kyushu Institute of Technology,  $^{(2}$ Kyushu University

Field line resonance (FLR) provides key diagnostics of plasmaspheric density but remains difficult to identify reliably in noisy spectrograms. We propose a novel framework that applies deep learning and morphological image processing to automate FLR detection and frequency extraction, highlighting the value of data-driven approaches in geospace science.

Our method uses paired spectrograms from amplitude-ratio and phase-difference analyses. An FLR discrimination model, based on ResNet18 transfer learning, classifies FLR presence in phase-difference spectrograms. Noise is suppressed with a variance-based filter that retains only low-variance regions, improving resonance visibility. For frequency estimation, Grad-CAM visualizations of the trained model highlight FLR regions, which are intersected with amplitude-ratio spectrograms. Morphological dilation/erosion and differencing along the frequency axis then yield FLR frequencies.

Using 4,987 paired images (80/20 split), the model achieved 0.839 accuracy, 0.875 precision, 0.890 recall, and 0.882 F1-score. False negatives were minimized, and errors mainly arose from visually ambiguous cases. Frequency detection showed successful cases, but overall stability remains limited and further refinement is required.

This work introduces an image-based paradigm for FLR analysis, combining computer vision techniques with geophysical diagnostics. The proposed approach not only supports automated plasmaspheric density estimation but also offers broader applicability to ionospheric and magnetospheric data, contributing to space environment modeling and forecasting.

磁力線共鳴(FLR)はプラズマ圏密度診断に有効な指標であるが、雑音を含むスペクトログラムから信頼性高く同定することは容易ではない。本研究は、深層学習とモルフォロジー画像処理を組み合わせて FLR 検出と周波数抽出を自動化する新しい手法を提案し、地球宇宙科学におけるデータ駆動型アプローチの有効性を示す。

手法としては、振幅比法および位相差法から得られるペアのスペクトログラム画像を入力とする。位相差法スペクトログラムについては、ResNet18を用いた転移学習による FLR 判別モデルを構築し、局所的な分散値に基づくフィルタリングによって雑音を低減した。周波数抽出では、学習済みモデルの Grad-CAM を用いて FLR 領域を可視化し、これを振幅比法スペクトログラムと論理積処理した後、モルフォロジー処理(膨張・収縮)と周波数軸方向の差分計算により FLR 周波数を算出する。

4,987 組のスペクトログラム(学習 80%,検証 20%)を用いた評価の結果,FLR 判別モデルは平均正解率 0.839,Precision 0.875,Recall 0.890,F1-score 0.882 を達成した.誤判別の多くは目視でも FLR の有無が曖昧なケースであり,今後は特徴量抽出や多値分類の導入により改善が期待される.周波数検出では成功例が確認されたが,全体としての安定性は十分ではなく,さらなる改良が必要である.

本研究は、コンピュータビジョン技術と地球物理学的診断を融合した画像ベースの新しい FLR 解析手法を提示する. 本手法はプラズマ圏密度の自動推定を支援するのみならず、電離圏・磁気圏データ解析への応用にも広がり、宇宙環境モデル化や予測精度向上に寄与する可能性を有する.